Degree of coherence for electromagnetic fields
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Abstract:  The relationship between the visibility of fringes and the
degree of spatial coherence in electromagnetic two-pinhdkrference is
assessed. It is demonstrated that the customary definitidrealegree of
coherence of an electromagnetic field is flawed and a new ityéente of
the formal drawbacks, is introduced. The new definition,cliis shown to
be consistent with known results for Gaussian statistias,9ome unusual
properties characteristic only for electromagnetic fieliilhe degree of
coherence is measurable by a sequence of interferencerarpés.
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1. Introduction

Although Young'’s double-slit interference experiment Ipésyed a pivotal role in the devel-
opment of optics and quantum physics, the analyses so farlieeen performed almost exclu-
sively in scalar description. Yet electromagnetic intexfeee and coherence phenomena differ
in many fundamental and unexpected ways from the familiatascounterparts. Moreover,
the electromagnetic theory of optical coherence has beaweneasingly important not just for
the evaluation of polarization properties but due to theméadvances in microstructured ma-
terials in general [1-6]. On the other hand, although theecatce studies of electromagnetic
fields often deal with paraxial fields or wide-angle far figlth® emergence of nano photonics
has given an impetus to comprehensive investigation ofrgétieee-dimensional, nonparaxial
electromagnetic fields. In particular, it has recently bdemonstrated that optical near fields
may exhibit remarkable coherence phenomena, which areiafipgronounced when resonant
surface waves, e.g., surface plasmons or phonons, are@fci10].

Unlike in the scalar coherence theory, there does not exsisighe scalar quantity that is ca-
pable of describing the coherence of electromagnetic fetidso separate space—time points.
Hence the correlation properties are thus far examined Imguke concept of the degree of
polarization, which is capable of describing the correlagiat a one point only. In this article,
we introduce a scalar quantity describing the second-ardeelation properties of electro-
magnetic fields. We show that this quantity is closely coteebéo the existing definitions for
the degree of polarization and that it has the propertiegired, for the degree of coherence.
We also discuss possibilities for its measurement by usimgle interference experiments.

2. Young's interference experiment and measures of visibity

We begin by briefly recalling the main aspects of Young'sriigtieence experiment both in scalar
and electromagnetic descriptions (see Fig. 1). As is ushialdistancel between the aperture
plane A and the screeB is assumed to be large compared to the wavelength of the-quasi
monochromatic light emitted by the extended souckn addition, the pinholeB;, andP, are
taken to be much smaller than the coherence area of the ingdight and the separatianof
the pinholes is much smaller than the distance between threesand the aperture plafe

If the polarization properties of the field are neglected,ubual scalar approach ensues. It is
readily shown that the time-averaged spatial intensityridistion at the screen plane is given
by the expression [11]

(1(r 1) = (I (r,0)) + (a(r, 1)) + 24/ (r, 1))/ (I2(r, 1) O{y(rs,r2, (Ri—Ro) /O)}, (1)

where(l1(r,t)) and (lo(r,t)) are the intensities that are measured if only pintRler P is
open, respectivel\R; andR; are the distances from the pinholes to the observation jwist
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Fig. 1. The geometry of Young's interference experiment.

the speed of light in vacuum, afnddenotes the real part. The quantitgppearing in Eq. (1) is
called the complex degree of coherence and it is relatecttmtin quantity in scalar coherence
theory, namely the mutual coherence functigrby the equation

I(rq,ro,7)
<| (rlﬂt)><| (I’z,t)) 7

wherel (r1,r,7) = (U*(r1,t)U(ro,t + 1)) and(I(r,t)) = I'(r,r,0) is the time-averaged in-
tensity at the position. HereU(r,t) denotes a realization of the stationary scalar field. If the
intensities aP, andP, are the same, the absolute value of the complex degree oferuieeis
equal to the visibility of the interference fringes on theesm. On the other hand, the argument
of yis directly related to the lateral locations of the intepsitaxima [11].

The scalar analysis is valid as long as the polarizatioe stighe field is uniform. If, however,
the polarization properties vary spatially, the correlasi between the electromagnetic field
components must be taken into account. In a general situatiarbitrary polarization there are
six components of the electromagnetic field, and their ¢atiomns can be handled by means of
four 3x 3 mutual coherence matrices [11,12]. For example, the lkedigas of the electric field
E(r,t) are described by the matrix

E(r1,r2,1) =[&j(r1,r2, 1) = [(E (r1,t)Ej(ra,t +1))] (3)

where the function&;(r,t), (i = x,y,2), denote the Cartesian components of the electric field
vector.

When dealing with paraxial electromagnetic fields, as in Eighe electric mutual coherence
matrix reduces to a 2 matrix whose elements describe the correlations of, thgx- and
y-components only [1]. The interference and coherence ptiepeof paraxial electromagnetic
fields may be examined with Young's experiment. Such a s@nas thoroughly studied by
Karczewski [13], who concluded that Eq. (1) holds for elestagnetic fields as well, assuming
that the observation poifR is located in the paraxial region. In that case the stramghtird
electromagnetic extension of the complex degree of colkerefscalar fields is defined by the
equation

y(ra,rz, 1) = (2

tr&(rq,ra, 1) 7 @
(H(r1,0)) (I (r2,1))
where tr stands for the trace operation and the time-avdragtcal intensity is now given by

(I(r,t))y =tr&(r,r,0). The quantity] is related to both the visibility and the location of the
maxima of the interference fringes as in the scalar case.

{(re,r2,1) =
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However, due to the vectorial nature of light, the interfeefringes in Young’s experiment
are not always directly related to the coherence propesfitee field. In order to bring out this
fact more explicitly, we consider a fully coherent elecfiétd with E(r1,t) = Cexp(—iwt)X and
E(rz,t) =Cexp(—iwt)y, whereC is the complex amplitude of the field) denotes the angular
frequency, an& andy are the unit vectors in the and they-directions, respectively. Now the
diagonal elements of the electric coherence matrix vamshtaus{ (r1,r2, 7) = 0. This clearly
means that no interference fringes are observed. On thelwthd, if we examine the same ex-
ample in a rotated Cartesian coordinate system defined mniheectorst’ = 2-1/2(%+-9) and
§' =2-12(—%+79), we notice that the scalar degree of coherence fox'ttendy’-components
of the field take the formg, (r1,r2, 7) = exp(—iwt) and{y (r1,r2, 1) = —exp(—iwr), respec-
tively. This means, in view of Eq. (1), that the contributitmthe interference pattern at the
screen from, say thg-component, is sinusoidal. The same holds also forytheomponent,
but the fringes are mutually shifted by half a period so thatresulting intensity distribution
is uniform.

Since the field in our example is fully coherent, we must codelthat the quantity (or
its space-frequency analog discussed in Refs. [15-17F dotcorrectly describe the spatial
coherence properties of the field and thus it cannot be ctilediegree of coherence for the
electromagnetic field. Howeve, still has the clear physical meaning that it is directly con-
nected to the visibility of electromagnetic interferendades.

The fact that the trace of the coherence matrix does not comtBormation about corre-
lations between the components suggests that the numerdtay. (4) is not invariant under
transformations into orthogonal curvilinear coordinatetems [18], such as circular cylindri-
cal or spherical polar coordinates. This prediction may ieeustood when we recall that such
a transformation can be expressed in the form of a positepeddent rotation matri¥’ (r),
i.e., any (column) vector in the new basis takes the fBftn) = .77 (r)F(r). Since the transfor-
mation matrix is orthogonal, the mutual coherence matrangjes into

E'Nr1,02,1) =T (r)&(r1,r2,1).7 Lry). (5)

We see at once thgtof Eq. (4) is not invariant under the transformation, exéephe special
case of7 (r1) = J(r2), which occurs, for example, in a pure rotation of the cocatérsystem.
Although in many cases the most natural coordinate systdya tsed is Cartesian, there exist
several situations in which, for example, the sphericahpobordinates are the best choice for
describing the behavior of the field. Such a situation is antered when examining far-field
radiation patterns of electromagnetic sources [15, 16].

3. Electromagnetic degree of coherence

Our physical examples and mathematical arguments cldaoly that if we want to characterize
the coherence of the electromagnetic field by a single scplantity [13], the visibility of
interference fringes in a single experiment cannot gelydoalused for this purpose. Hence the
definition of such a quantity should be approached from afit point of view. In addition,
since a general electromagnetic field is not paraxial we ramgtloy the full 3x 3 electric
coherence matrix.

Let us introduce a quantitys(r1,r2, ) by the equation

tr[&(r1,r2, 1)8(ra,r1,—1)]
(Hra, 1) (I(r2,1))
Yijl&j(ra,ra, )

3ijdi(r,r1,0)855(rz,r2,0) ©

fo’(fl,rz,T) =
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where i,j = x,y,z, and we have made use of the Hermiticity relatiéfj(ry,r2,7) =
&ji(r2,r1,—T1) satisfied by the electric coherence-matrix elements. Tthesjuantityy,, which
we shall refer to as the degree of coherence for electroniadiedds, is equal to the Frobe-
nius (or Euclidean) norm [19] of the electric coherence aff, normalized by the factor
(1(ra,0)Y2(1 (r2,0)) V2.

Since the elements of the electric mutual coherence matatisfg the inequality
|&(r1,r2,7)|? < &i(r1,r1,0)8jj(r2,r2,0) derived from the nonnegative definiteness condi-
tion [11, 20],y, is immediately seen to obey the conditior<O/e < 1. Unlike the quantity
defined in Eq. (4)ys contains information about the correlations between thgeSimn com-
ponents of the field and it equals unity if, and only if, thesaiperfect correlation between all
the field components a andr,. Thusyg is always equal to one for fully coherent fields and
hence also for the example considered in Section 2, for whislas found to be zero.

Itis also noticed that, wheregss generally a complex quantityy is real. This property has
its roots in the fact that the arguments (or phases) of ttitreleoherence-matrix elements are,
in general, mutually independent. Hence it is not possibléefine a single complex number
which retains the phase information of all elements of thérimndt should be kept in mind,
however, that in scalar coherence theory it is the absokfigey rather than the phase, of the
complex degree of coherence which gives the measure fargstref the field correlations.
Therefore, the newly defined quantigy may be seen as an extension of the absolute value
of the complex degree of coherence for scalar fields. Thisatsmbe verified immediately by
retaining only one field component in Eq. (6).

Let us next consider the transformationygfinto an orthogonal curvilinear coordinate sys-
tem. By inserting Eqg. (5) into Eq. (6), we immediately obgethat, unlike of Eq. (4), the
electromagnetic degree of coherengeis invariant under such a transformation. This means
that the degree of coherence may be calculated by usingxéon@e, spherical polar coordi-
nates, which is useful when examining far-field radiatiotigyas of partially coherent sources.
On the other hand, this result implies that the rotation effibld at eitherr, or r, by using
a suitable optical element will not affect the valueypf which is of importance to remember
when one performs two-pinhole interference experimentsnitance.

Since the degree of coherence contains information abewtdtrelations that exist between
the orthogonal components of the electric field at a pair dfifgpone might expect that there
exists a connection betwegn and the degree of polarization that characterizes coivakat
in a single point. By settings =r, =r andt = 0, the electric coherence matrix of Eq. (3)
reduces to the 8 3 equal-time coherence matrix, which we denotetlfy). Thus, the space—
time counterpart of the degree of polarizati®y(r), for three-dimensional fields [10, 21-23]

takes on the form
3 [trd?(r)

P3(r) = 2 LrZCD(r) B %} - g {yﬁ(r)— %} ’ (7)

wherey (r) = yg(r,r,0). Furthermore, for paraxial fields, connection to the cotieeml two-
dimensional degree of polarization [1B(r), is established

P2 =2~ 3| =20~ 3] ©

Now an important property of the degree of coherence of mlpwgnetic fields emerges.
Namely, unlike in the scalar case, Eq. (6) does not approaiti when the two points co-
incide. At first sight this might seem quite counter-ingti but it is, in fact, as expected since
the numerator of Eqg. (6) contains cross-correlation fumgticharacterizing coherence between
orthogonal field components. Thus, the valuggfr ) is determined by the polarization state of
the field, as evidenced by Eqs. (7) and (8), and it is equal éoomity for fully polarized fields.
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This is true both in two or three dimensional description aftial polarization. Moreover, due
to the autocorrelation functions the valueypfr) never assumes the value of zero. In fact, we
see from Eq. (7) that the minimum value fgr(r) is 1/v/3.

4. Measurements of the degree of coherence

Let us recall from Ref. [11, Chap. 8] that, for fields obeyinguSsian statistics, there exists a
simple connection between the intensity fluctuatidhg,t) = I(r,t) — (I(r,t)) and the scalar
degree of coherence. More specifically, the square of thelatiesvalue ofy may be expressed

in the form
(AL (r1,t)Al(ra,t + 1)) ©)

(H(r1,0)) (I (r2,t))
Since the right-hand side contains only terms dependindghenntensities at, andr; which
have the same physical meaning in both scalar and electr@tiagases, it is reasonable to
demand that the functional form of Eq. (9) must be the samelémtromagnetic fields. Hence,
under the assumption of Gaussian statistics, Eq. (9) mayberstood to be the definition of
the degree of coherence, not only with the scalar approatthnbhe electromagnetic case as
well.

Let us now make use of the result for electromagnetic fieldsyioly Gaussian statistics,
namely (see Ref. [11], Eq. (8.4-15))

V(ra,r2, 7)) =

(BI(r, DA (r,t+ 1)) = ¥ | 611,12, 7) 2 (10)
1)

Substitution of this into Eq. (9) immediately yields thag texpression of the degree of coher-
ence obtained in electromagnetic Gaussian statisticeidgis with our general formula given
in Eq. (6). Therefore our definition ofs(r1,r2, 7) is the only possible one that is fully con-
sistent with the scalar degree of coherence (or its abswealte), of course assuming that the
coherence properties of only the electric field are conakrne

The straightforward connection between the degree of eolterand the intensity fluctua-
tions established above predicts the possibility for direeasurement of the degree of coher-
ence, equivalently to the scalar case [11]. This appliesraby only to fields obeying Gaussian
statistics and if the statistical properties of the fieldraseGaussian, other ways for measuring
Y must be found. Since we already know that with Young’s twahpie experiment a single
measurement of the visibility of the interference fringegsl not correctly predict the electro-
magnetic degree of coherence, we suggest the followingsefifour measurements, in which
again attention is restricted to two-dimensional fieldg/onl

In the first step, a linear polarizer is used to filter one congo, say the-component, of
the field. The value o&(r1,r2,7) is then obtained, similarly to the scalar case, by a direct
measurement of the visibility of the interference fringksthe second step, the polarizer is
rotated byrt/2 radians in order to block the-component and the eleme#§y(ri,r2, 1) is
obtained analogously to the step one. In steps three andJitich are essentially similar
to that discussed recently by Gori [1], tReandy-components of the field at the pinhdke
are at first rotated byr/2 radians by an appropriate optical component. In the thep, safter
the rotation, a linear polarizer is used to filter out the fieldcomponent, in which case the
fringe visibility gives the elemenfy(r1,r2, 7). In the fourth step, the-component of the field
is cut off by the polarizer and the value &jx(r1,r2, T) is obtained. The degree of coherence
e (ra,r2,7) is then calculated by using Eq. (6).

#2339 - $15.00 US Received April 02, 2003; Revised April 29, 2003
(C) 2003 OsA 19 May 2003/ Vol. 11, No. 10/ OPTICS EXPRESS 1142



5. Conclusions

We have analyzed the coherence properties of nonuniforoibriged electromagnetic fields.
We showed that the customary definition for the degree of restoe for the electromagnetic
fields does not predict the coherence properties accuratelymay, in fact, lead to severe
misinterpretations of spatial coherence. This phenomamizes from the fact that a quantity
derived straightforwardly from the degree of coherencesfmlar fields is connected to the
visibility of the interference fringes similarly to the daacase. In the electromagnetic case the
visibility is affected, not only by the coherence propestd# the field, but by the polarization
properties of the field as well. Therefore the correlatiogtsvieen the electric-field components
can not be neglected in the analysis of nonuniformly podatigartially coherent fields.

In our new definition for the degree of coherence, all the eleiof the electric coherence
matrix describing the correlations between the Cartesiamponents of the field are taken into
account. Hence the degree of coherence remains invaritirg field is, for example, rotated
by using a suitable anisotropic element. On the other hamdgoantity remains invariant in
the rotation of the coordinate axes, as well as in varioussframations between the coordi-
nate systems which should be particularly useful when exiagithe far-field coherence of
electromagnetic sources.

In this article we have considered the correlations of tleetak field only. However, one
may equivalently define a quantity describing the correfetiof the magnetic field. On the
other hand, Eqg. (6) may readily be extended to take into adaso the correlations that exist
between the electric and magnetic field components.
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