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Abstract: The relationship between the visibility of fringes and the
degree of spatial coherence in electromagnetic two-pinhole interference is
assessed. It is demonstrated that the customary definition of the degree of
coherence of an electromagnetic field is flawed and a new quantity, free of
the formal drawbacks, is introduced. The new definition, which is shown to
be consistent with known results for Gaussian statistics, has some unusual
properties characteristic only for electromagnetic fields. The degree of
coherence is measurable by a sequence of interference experiments.
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1. Introduction

Although Young’s double-slit interference experiment hasplayed a pivotal role in the devel-
opment of optics and quantum physics, the analyses so far have been performed almost exclu-
sively in scalar description. Yet electromagnetic interference and coherence phenomena differ
in many fundamental and unexpected ways from the familiar scalar counterparts. Moreover,
the electromagnetic theory of optical coherence has becomeincreasingly important not just for
the evaluation of polarization properties but due to the recent advances in microstructured ma-
terials in general [1–6]. On the other hand, although the coherence studies of electromagnetic
fields often deal with paraxial fields or wide-angle far fields, the emergence of nano photonics
has given an impetus to comprehensive investigation of general three-dimensional, nonparaxial
electromagnetic fields. In particular, it has recently beendemonstrated that optical near fields
may exhibit remarkable coherence phenomena, which are especially pronounced when resonant
surface waves, e.g., surface plasmons or phonons, are excited [7–10].

Unlike in the scalar coherence theory, there does not exist asingle scalar quantity that is ca-
pable of describing the coherence of electromagnetic fieldsat two separate space–time points.
Hence the correlation properties are thus far examined by using the concept of the degree of
polarization, which is capable of describing the correlations at a one point only. In this article,
we introduce a scalar quantity describing the second-ordercorrelation properties of electro-
magnetic fields. We show that this quantity is closely connected to the existing definitions for
the degree of polarization and that it has the properties required for the degree of coherence.
We also discuss possibilities for its measurement by using simple interference experiments.

2. Young’s interference experiment and measures of visibility

We begin by briefly recalling the main aspects of Young’s interference experiment both in scalar
and electromagnetic descriptions (see Fig. 1). As is usual,the distanced between the aperture
planeA and the screenB is assumed to be large compared to the wavelength of the quasi-
monochromatic light emitted by the extended sourceS. In addition, the pinholesP1 andP2 are
taken to be much smaller than the coherence area of the incoming light and the separationa of
the pinholes is much smaller than the distance between the source and the aperture planeA.

If the polarization properties of the field are neglected, the usual scalar approach ensues. It is
readily shown that the time-averaged spatial intensity distribution at the screen plane is given
by the expression [11]

〈I(r , t)〉 = 〈I1(r , t)〉+ 〈I2(r , t)〉+2
√

〈I1(r , t)〉
√

〈I2(r , t)〉ℜ{γ(r1, r2,(R1−R2)/c)} , (1)

where〈I1(r , t)〉 and〈I2(r , t)〉 are the intensities that are measured if only pinholeP1 or P2 is
open, respectively,R1 andR2 are the distances from the pinholes to the observation point, c is
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Fig. 1. The geometry of Young’s interference experiment.

the speed of light in vacuum, andℜ denotes the real part. The quantityγ appearing in Eq. (1) is
called the complex degree of coherence and it is related to the main quantity in scalar coherence
theory, namely the mutual coherence functionΓ, by the equation

γ(r1, r2,τ) =
Γ(r1, r2,τ)

√

〈I(r1, t)〉〈I(r2, t)〉
, (2)

whereΓ(r1, r2,τ) = 〈U∗(r1, t)U(r2, t + τ)〉 and 〈I(r , t)〉 = Γ(r , r ,0) is the time-averaged in-
tensity at the positionr . HereU(r , t) denotes a realization of the stationary scalar field. If the
intensities atP1 andP2 are the same, the absolute value of the complex degree of coherence is
equal to the visibility of the interference fringes on the screen. On the other hand, the argument
of γ is directly related to the lateral locations of the intensity maxima [11].

The scalar analysis is valid as long as the polarization state of the field is uniform. If, however,
the polarization properties vary spatially, the correlations between the electromagnetic field
components must be taken into account. In a general situation of arbitrary polarization there are
six components of the electromagnetic field, and their correlations can be handled by means of
four 3×3 mutual coherence matrices [11,12]. For example, the correlations of the electric field
E(r , t) are described by the matrix

E (r1, r2,τ) = [Ei j (r1, r2,τ)] =
[〈

E∗
i (r1, t)E j(r2, t + τ)

〉]

, (3)

where the functionsEi(r , t), (i = x,y,z), denote the Cartesian components of the electric field
vector.

When dealing with paraxial electromagnetic fields, as in Fig.1, the electric mutual coherence
matrix reduces to a 2×2 matrix whose elements describe the correlations of, e.g.,thex- and
y-components only [1]. The interference and coherence properties of paraxial electromagnetic
fields may be examined with Young’s experiment. Such a situation is thoroughly studied by
Karczewski [13], who concluded that Eq. (1) holds for electromagnetic fields as well, assuming
that the observation pointP is located in the paraxial region. In that case the straightforward
electromagnetic extension of the complex degree of coherence of scalar fields is defined by the
equation

ζ (r1, r2,τ) =
trE (r1, r2,τ)

√

〈I(r1, t)〉〈I(r2, t)〉
, (4)

where tr stands for the trace operation and the time-averaged optical intensity is now given by
〈I(r , t)〉 = trE (r , r ,0). The quantityζ is related to both the visibility and the location of the
maxima of the interference fringes as in the scalar case.
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However, due to the vectorial nature of light, the interference fringes in Young’s experiment
are not always directly related to the coherence propertiesof the field. In order to bring out this
fact more explicitly, we consider a fully coherent electricfield withE(r1, t) =Cexp(−iωt)x̂ and
E(r2, t) = Cexp(−iωt)ŷ, whereC is the complex amplitude of the field,ω denotes the angular
frequency, and̂x andŷ are the unit vectors in thex- and they-directions, respectively. Now the
diagonal elements of the electric coherence matrix vanish and thusζ (r1, r2,τ) = 0. This clearly
means that no interference fringes are observed. On the other hand, if we examine the same ex-
ample in a rotated Cartesian coordinate system defined by theunit vectorŝx′ = 2−1/2(x̂+ ŷ) and
ŷ′ = 2−1/2(−x̂+ ŷ), we notice that the scalar degree of coherence for thex′- andy′-components
of the field take the formsζx′(r1, r2,τ) = exp(−iωτ) andζy′(r1, r2,τ) =−exp(−iωτ), respec-
tively. This means, in view of Eq. (1), that the contributionto the interference pattern at the
screen from, say thex′-component, is sinusoidal. The same holds also for they′-component,
but the fringes are mutually shifted by half a period so that the resulting intensity distribution
is uniform.

Since the field in our example is fully coherent, we must conclude that the quantityζ (or
its space-frequency analog discussed in Refs. [15–17]) does not correctly describe the spatial
coherence properties of the field and thus it cannot be calledthe degree of coherence for the
electromagnetic field. However,ζ still has the clear physical meaning that it is directly con-
nected to the visibility of electromagnetic interference fringes.

The fact that the trace of the coherence matrix does not contain information about corre-
lations between the components suggests that the numeratorin Eq. (4) is not invariant under
transformations into orthogonal curvilinear coordinate systems [18], such as circular cylindri-
cal or spherical polar coordinates. This prediction may be understood when we recall that such
a transformation can be expressed in the form of a position-dependent rotation matrixT (r),
i.e., any (column) vector in the new basis takes the formF′(r) = T (r)F(r). Since the transfor-
mation matrix is orthogonal, the mutual coherence matrix changes into

E
′(r1, r2,τ) = T (r1)E (r1, r2,τ)T −1(r2). (5)

We see at once thatζ of Eq. (4) is not invariant under the transformation, exceptin the special
case ofT (r1) = T (r2), which occurs, for example, in a pure rotation of the coordinate system.
Although in many cases the most natural coordinate system tobe used is Cartesian, there exist
several situations in which, for example, the spherical polar coordinates are the best choice for
describing the behavior of the field. Such a situation is encountered when examining far-field
radiation patterns of electromagnetic sources [15,16].

3. Electromagnetic degree of coherence

Our physical examples and mathematical arguments clearly show that if we want to characterize
the coherence of the electromagnetic field by a single scalarquantity [13], the visibility of
interference fringes in a single experiment cannot generally be used for this purpose. Hence the
definition of such a quantity should be approached from a different point of view. In addition,
since a general electromagnetic field is not paraxial we mustemploy the full 3× 3 electric
coherence matrix.

Let us introduce a quantityγE (r1, r2,τ) by the equation

γ2
E (r1, r2,τ) =

tr [E (r1, r2,τ)E (r2, r1,−τ)]

〈I(r1, t)〉〈I(r2, t)〉

=
∑i, j |Ei j (r1, r2,τ)|2

∑i, j Eii (r1, r1,0)E j j (r2, r2,0)
, (6)
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where i, j = x,y,z, and we have made use of the Hermiticity relationE ∗
i j (r1, r2,τ) =

E ji (r2, r1,−τ) satisfied by the electric coherence-matrix elements. Thus,the quantityγE , which
we shall refer to as the degree of coherence for electromagnetic fields, is equal to the Frobe-
nius (or Euclidean) norm [19] of the electric coherence matrix E , normalized by the factor
〈I(r1, t)〉1/2〈I(r2, t)〉1/2.

Since the elements of the electric mutual coherence matrix satisfy the inequality
|Ei j (r1, r2,τ)|2 ≤ Eii (r1, r1,0)E j j (r2, r2,0) derived from the nonnegative definiteness condi-
tion [11, 20],γE is immediately seen to obey the condition 0≤ γE ≤ 1. Unlike the quantityζ
defined in Eq. (4),γE contains information about the correlations between the Cartesian com-
ponents of the field and it equals unity if, and only if, there is a perfect correlation between all
the field components atr1 andr2. ThusγE is always equal to one for fully coherent fields and
hence also for the example considered in Section 2, for whichζ was found to be zero.

It is also noticed that, whereasγ is generally a complex quantity,γE is real. This property has
its roots in the fact that the arguments (or phases) of the electric coherence-matrix elements are,
in general, mutually independent. Hence it is not possible to define a single complex number
which retains the phase information of all elements of the matrix. It should be kept in mind,
however, that in scalar coherence theory it is the absolute value, rather than the phase, of the
complex degree of coherence which gives the measure for strength of the field correlations.
Therefore, the newly defined quantityγE may be seen as an extension of the absolute value
of the complex degree of coherence for scalar fields. This canalso be verified immediately by
retaining only one field component in Eq. (6).

Let us next consider the transformation ofγE into an orthogonal curvilinear coordinate sys-
tem. By inserting Eq. (5) into Eq. (6), we immediately observe that, unlikeζ of Eq. (4), the
electromagnetic degree of coherenceγE is invariant under such a transformation. This means
that the degree of coherence may be calculated by using, for example, spherical polar coordi-
nates, which is useful when examining far-field radiation patterns of partially coherent sources.
On the other hand, this result implies that the rotation of the field at eitherr1 or r2 by using
a suitable optical element will not affect the value ofγE , which is of importance to remember
when one performs two-pinhole interference experiments, for instance.

Since the degree of coherence contains information about the correlations that exist between
the orthogonal components of the electric field at a pair of points, one might expect that there
exists a connection betweenγE and the degree of polarization that characterizes correlations
in a single point. By settingr1 = r2 = r andτ = 0, the electric coherence matrix of Eq. (3)
reduces to the 3×3 equal-time coherence matrix, which we denote byΦ(r). Thus, the space–
time counterpart of the degree of polarization,P3(r), for three-dimensional fields [10, 21–23]
takes on the form

P2
3 (r) =

3
2

[

trΦ2(r)
tr2Φ(r)

− 1
3

]

=
3
2

[

γ2
E (r)− 1

3

]

, (7)

whereγE (r) = γE (r , r ,0). Furthermore, for paraxial fields, connection to the conventional two-
dimensional degree of polarization [11],P2(r), is established

P2
2 (r) = 2

[

trΦ2(r)
tr2Φ(r)

− 1
2

]

= 2

[

γ2
E (r)− 1

2

]

. (8)

Now an important property of the degree of coherence of electromagnetic fields emerges.
Namely, unlike in the scalar case, Eq. (6) does not approach unity when the two points co-
incide. At first sight this might seem quite counter-intuitive, but it is, in fact, as expected since
the numerator of Eq. (6) contains cross-correlation functions characterizing coherence between
orthogonal field components. Thus, the value ofγE (r) is determined by the polarization state of
the field, as evidenced by Eqs. (7) and (8), and it is equal to one only for fully polarized fields.
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This is true both in two or three dimensional description of partial polarization. Moreover, due
to the autocorrelation functions the value ofγE (r) never assumes the value of zero. In fact, we
see from Eq. (7) that the minimum value forγE (r) is 1/

√
3.

4. Measurements of the degree of coherence

Let us recall from Ref. [11, Chap. 8] that, for fields obeying Gaussian statistics, there exists a
simple connection between the intensity fluctuations∆I(r , t) = I(r , t)−〈I(r , t)〉 and the scalar
degree of coherence. More specifically, the square of the absolute value ofγ may be expressed
in the form

|γ(r1, r2,τ)|2 =
〈∆I(r1, t)∆I(r2, t + τ)〉

〈I(r1, t)〉〈I(r2, t)〉
. (9)

Since the right-hand side contains only terms depending on the intensities atr1 andr2 which
have the same physical meaning in both scalar and electromagnetic cases, it is reasonable to
demand that the functional form of Eq. (9) must be the same forelectromagnetic fields. Hence,
under the assumption of Gaussian statistics, Eq. (9) may be understood to be the definition of
the degree of coherence, not only with the scalar approach, but in the electromagnetic case as
well.

Let us now make use of the result for electromagnetic fields obeying Gaussian statistics,
namely (see Ref. [11], Eq. (8.4–15))

〈∆I(r1, t)∆I(r2, t + τ)〉 = ∑
i, j

∣

∣Ei j (r1, r2,τ)
∣

∣

2
. (10)

Substitution of this into Eq. (9) immediately yields that the expression of the degree of coher-
ence obtained in electromagnetic Gaussian statistics coincides with our general formula given
in Eq. (6). Therefore our definition ofγE (r1, r2,τ) is the only possible one that is fully con-
sistent with the scalar degree of coherence (or its absolutevalue), of course assuming that the
coherence properties of only the electric field are concerned.

The straightforward connection between the degree of coherence and the intensity fluctua-
tions established above predicts the possibility for direct measurement of the degree of coher-
ence, equivalently to the scalar case [11]. This applies naturally only to fields obeying Gaussian
statistics and if the statistical properties of the field arenot Gaussian, other ways for measuring
γE must be found. Since we already know that with Young’s two-pinhole experiment a single
measurement of the visibility of the interference fringes does not correctly predict the electro-
magnetic degree of coherence, we suggest the following series of four measurements, in which
again attention is restricted to two-dimensional fields only.

In the first step, a linear polarizer is used to filter one component, say they-component, of
the field. The value ofExx(r1, r2,τ) is then obtained, similarly to the scalar case, by a direct
measurement of the visibility of the interference fringes.In the second step, the polarizer is
rotated byπ/2 radians in order to block thex-component and the elementEyy(r1, r2,τ) is
obtained analogously to the step one. In steps three and four, which are essentially similar
to that discussed recently by Gori [1], thex- andy-components of the field at the pinholeP2

are at first rotated byπ/2 radians by an appropriate optical component. In the third step, after
the rotation, a linear polarizer is used to filter out the field’s y-component, in which case the
fringe visibility gives the elementExy(r1, r2,τ). In the fourth step, thex-component of the field
is cut off by the polarizer and the value ofEyx(r1, r2,τ) is obtained. The degree of coherence
γE (r1, r2,τ) is then calculated by using Eq. (6).
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5. Conclusions

We have analyzed the coherence properties of nonuniformly polarized electromagnetic fields.
We showed that the customary definition for the degree of coherence for the electromagnetic
fields does not predict the coherence properties accuratelyand may, in fact, lead to severe
misinterpretations of spatial coherence. This phenomenonarises from the fact that a quantity
derived straightforwardly from the degree of coherence forscalar fields is connected to the
visibility of the interference fringes similarly to the scalar case. In the electromagnetic case the
visibility is affected, not only by the coherence properties of the field, but by the polarization
properties of the field as well. Therefore the correlations between the electric-field components
can not be neglected in the analysis of nonuniformly polarized partially coherent fields.

In our new definition for the degree of coherence, all the elements of the electric coherence
matrix describing the correlations between the Cartesian components of the field are taken into
account. Hence the degree of coherence remains invariant ifthe field is, for example, rotated
by using a suitable anisotropic element. On the other hand, our quantity remains invariant in
the rotation of the coordinate axes, as well as in various transformations between the coordi-
nate systems which should be particularly useful when examining the far-field coherence of
electromagnetic sources.

In this article we have considered the correlations of the electric field only. However, one
may equivalently define a quantity describing the correlations of the magnetic field. On the
other hand, Eq. (6) may readily be extended to take into account also the correlations that exist
between the electric and magnetic field components.
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